Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
1.
J Virol ; 98(3): e0148523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38412044

RESUMO

Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE: Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.


Assuntos
Filaminas , Vírus Vaccinia , Proteínas Virais , Humanos , Linhagem Celular , DNA/metabolismo , Filaminas/genética , Filaminas/metabolismo , NF-kappa B/metabolismo , Vaccinia/virologia , Vírus Vaccinia/patogenicidade , Vírus Vaccinia/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais
2.
J Virol ; 97(12): e0127223, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38009914

RESUMO

IMPORTANCE: Human poxvirus infections have caused significant public health burdens both historically and recently during the unprecedented global Mpox virus outbreak. Although vaccinia virus (VACV) infection of mice is a commonly used model to explore the anti-poxvirus immune response, little is known about the metabolic changes that occur in vivo during infection. We hypothesized that the metabolome of VACV-infected skin would reflect the increased energetic requirements of both virus-infected cells and immune cells recruited to sites of infection. Therefore, we profiled whole VACV-infected skin using untargeted mass spectrometry to define the metabolome during infection, complementing these experiments with flow cytometry and transcriptomics. We identified specific metabolites, including nucleotides, itaconic acid, and glutamine, that were differentially expressed during VACV infection. Together, this study offers insight into both virus-specific and immune-mediated metabolic pathways that could contribute to the clearance of cutaneous poxvirus infection.


Assuntos
Metaboloma , Pele , Vírus Vaccinia , Vaccinia , Animais , Camundongos , Citometria de Fluxo , Perfilação da Expressão Gênica , Glutamina/metabolismo , Espectrometria de Massas , Nucleotídeos/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/virologia , Vaccinia/imunologia , Vaccinia/metabolismo , Vaccinia/virologia , Vírus Vaccinia/metabolismo , Carga Viral
3.
J Virol ; 97(3): e0175822, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916936

RESUMO

Recent studies have begun to reveal the complex and multifunctional roles of N6-methyladenosine (m6A) modifications and their associated writer, reader, and eraser proteins in infection by diverse RNA and DNA viruses. However, little is known about their regulation and functions during infection by several viruses, including poxviruses. Here, we show that members of the YTH Domain Family (YTHDF), in particular YTHDF2, are downregulated as the prototypical poxvirus, vaccinia virus (VacV) enters later stages of replication in a variety of natural target cell types, but not in commonly used transformed cell lines wherein the control of YTHDF2 expression appears to be dysregulated. YTHDF proteins also decreased at late stages of infection by herpes simplex virus 1 (HSV-1) but not human cytomegalovirus, suggesting that YTHDF2 is downregulated in response to infections that induce host shutoff. In line with this idea, YTHDF2 was potently downregulated upon infection with a VacV mutant expressing catalytically inactive forms of the decapping enzymes, D9 and D10, which fails to degrade dsRNA and induces a protein kinase R response that itself inhibits protein synthesis. Overexpression and RNAi-mediated depletion approaches further demonstrate that YTHDF2 does not directly affect VacV replication. Instead, experimental downregulation of YTHDF2 or the related family member, YTHDF1, induces a potent increase in interferon-stimulated gene expression and establishes an antiviral state that suppresses infection by either VacV or HSV-1. Combined, our data suggest that YTHDF2 is destabilized in response to infection-induced host shutoff and serves to augment host antiviral responses. IMPORTANCE There is increasing recognition of the importance of N6-methyladenosine (m6A) modifications to both viral and host mRNAs and the complex roles this modification plays in determining the fate of infection by diverse RNA and DNA viruses. However, in many instances, the functional contributions and importance of specific m6A writer, reader, and eraser proteins remains unknown. Here, we show that natural target cells but not transformed cell lines downregulate the YTH Domain Family (YTHDF) of m6A reader proteins, in particular YTHDF2, in response to shutoff of protein synthesis upon infection with the large DNA viruses, vaccinia virus (VacV), or herpes simplex virus type 1. We further reveal that YTHDF2 downregulation also occurs as part of the host protein kinase R response to a VacV shutoff mutant and that this downregulation of YTHDF family members functions to enhance interferon-stimulated gene expression to create an antiviral state.


Assuntos
Poxviridae , Proteínas de Ligação a RNA , Vírus Vaccinia , Vaccinia , Humanos , Expressão Gênica , Interferons/metabolismo , Poxviridae/genética , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Vaccinia/virologia , Vírus Vaccinia/metabolismo , Replicação Viral , Infecções por Poxviridae/virologia , Interações Hospedeiro-Patógeno
4.
Viruses ; 14(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35215908

RESUMO

The transcription factors IRF3 and NF-κB are crucial in innate immune signalling in response to many viral and bacterial pathogens. However, mechanisms leading to their activation remain incompletely understood. Viral RNA can be detected by RLR receptors, such as RIG-I and MDA5, and the dsRNA receptor TLR3. Alternatively, the DExD-Box RNA helicases DDX1-DDX21-DHX36 activate IRF3/NF-κB in a TRIF-dependent manner independent of RIG-I, MDA5, or TLR3. Here, we describe DDX50, which shares 55.6% amino acid identity with DDX21, as a non-redundant factor that promotes activation of the IRF3 signalling pathway following its stimulation with viral RNA or infection with RNA and DNA viruses. Deletion of DDX50 in mouse and human cells impaired IRF3 phosphorylation and IRF3-dependent endogenous gene expression and cytokine/chemokine production in response to cytoplasmic dsRNA (polyIC transfection), and infection by RNA and DNA viruses. Mechanistically, whilst DDX50 co-immunoprecipitated TRIF, it acted independently to the previously described TRIF-dependent RNA sensor DDX1. Indeed, shRNA-mediated depletion of DDX1 showed DDX1 was dispensable for signalling in response to RNA virus infection. Importantly, loss of DDX50 resulted in a significant increase in replication and dissemination of virus following infection with vaccinia virus, herpes simplex virus, or Zika virus, highlighting its important role as a broad-ranging viral restriction factor.


Assuntos
RNA Helicases DEAD-box/metabolismo , Herpes Simples/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Simplexvirus/fisiologia , Vírus Vaccinia/fisiologia , Vaccinia/metabolismo , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Animais , RNA Helicases DEAD-box/genética , Herpes Simples/genética , Herpes Simples/virologia , Interações Hospedeiro-Patógeno , Humanos , Fator Regulador 3 de Interferon/genética , Camundongos , Fosforilação , Transdução de Sinais , Simplexvirus/genética , Vaccinia/genética , Vaccinia/virologia , Vírus Vaccinia/genética , Zika virus/genética , Infecção por Zika virus/genética , Infecção por Zika virus/virologia
5.
Nat Microbiol ; 7(1): 154-168, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949827

RESUMO

Infection of mammalian cells with viruses activates NF-κB to induce the expression of cytokines and chemokines and initiate an antiviral response. Here, we show that a vaccinia virus protein mimics the transactivation domain of the p65 subunit of NF-κB to inhibit selectively the expression of NF-κB-regulated genes. Using co-immunoprecipitation assays, we found that the vaccinia virus protein F14 associates with NF-κB co-activator CREB-binding protein (CBP) and disrupts the interaction between p65 and CBP. This abrogates CBP-mediated acetylation of p65, after which it reduces promoter recruitment of the transcriptional regulator BRD4 and diminishes stimulation of NF-κB-regulated genes CXCL10 and CCL2. Recruitment of BRD4 to the promoters of NFKBIA and CXCL8 remains unaffected by either F14 or JQ1 (a competitive inhibitor of BRD4 bromodomains), indicating that BRD4 recruitment is acetylation-independent. Unlike other viral proteins that are general antagonists of NF-κB, F14 is a selective inhibitor of NF-κB-dependent gene expression. An in vivo model of infection demonstrated that F14 promotes virulence. Molecular mimicry of NF-κB may be conserved because other orthopoxviruses, including variola, monkeypox and cowpox viruses, encode orthologues of F14.


Assuntos
Interações Hospedeiro-Patógeno/genética , Mimetismo Molecular , NF-kappa B/genética , Vírus Vaccinia/genética , Proteínas Virais/genética , Proteína de Ligação a CREB/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Transcrição Gênica , Vaccinia/virologia , Vírus Vaccinia/imunologia , Vírus Vaccinia/patogenicidade , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
6.
Viruses ; 13(10)2021 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-34696416

RESUMO

Vaccinia virus (VACV) is an enveloped DNA virus from the Orthopoxvirus family, various strains of which were used in the successful eradication campaign against smallpox. Both original and newer VACV-based replicating vaccines reveal a risk of serious complications in atopic individuals. VACV encodes various factors interfering with host immune responses at multiple levels. In atopic skin, the production of type I interferon is compromised, while VACV specifically inhibits the phosphorylation of the Interferon Regulatory Factor 3 (IRF-3) and expression of interferons. To overcome this block, we generated a recombinant VACV-expressing murine IRF-3 (WR-IRF3) and characterized its effects on virus growth, cytokine expression and apoptosis in tissue cultures and in spontaneously atopic Nc/Nga and control Balb/c mice. Further, we explored the induction of protective immune responses against a lethal dose of wild-type WR, the surrogate of smallpox. We demonstrate that the overexpression of IRF-3 by WR-IRF3 increases the expression of type I interferon, modulates the expression of several cytokines and induces superior protective immune responses against a lethal poxvirus challenge in both Nc/Nga and Balb/c mice. Additionally, the results may be informative for design of other virus-based vaccines or for therapy of different viral infections.


Assuntos
Fator Regulador 3 de Interferon/imunologia , Infecções por Poxviridae/imunologia , Vírus Vaccinia/genética , Animais , Expressão Gênica/genética , Regulação Viral da Expressão Gênica/genética , Imunidade/imunologia , Fator Regulador 3 de Interferon/genética , Interferon Tipo I/metabolismo , Interleucina-1beta/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Poxviridae/patogenicidade , Infecções por Poxviridae/prevenção & controle , Pele/imunologia , Vaccinia/virologia , Vacinas Virais/imunologia , Replicação Viral/imunologia
7.
Antiviral Res ; 195: 105179, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34530009

RESUMO

Orthopoxviruses such as variola and monkeypox viruses continue to threaten the human population. Monkeypox virus is endemic in central and western Africa and outbreaks have reached as far as the U.S. Although variola virus, the etiologic agent of smallpox, has been eradicated by a successful vaccination program, official and likely clandestine stocks of the virus exist. Moreover, studies with ectromelia virus (the etiological agent of mousepox) have revealed that IL-4 recombinant viruses are significantly more virulent than wild-type viruses even in mice treated with vaccines and/or antivirals. For these reasons, it is critical that antiviral modalities are developed to treat these viruses should outbreaks, or deliberate dissemination, occur. Currently, 2 antivirals (brincidofovir and tecovirimat) are in the U.S. stockpile allowing for emergency use of the drugs to treat smallpox. Both antivirals have advantages and disadvantages in a clinical and emergency setting. Here we report on the efficacy of a recombinant immunoglobulin (rVIG) that demonstrated efficacy against several orthopoxviruses in vitro and in vivo in both a prophylactic and therapeutic fashion. A single intraperitoneal injection of rVIG significantly protected mice when given up to 14 days before or as late as 6 days post challenge. Moreover, rVIG reduced morbidity, as measured by weight-change, as well as several previously established biomarkers of disease. In rVIG treated mice, we found that vDNA levels in blood were significantly reduced, as was ALT (a marker of liver damage) and infectious virus levels in the liver. No apparent adverse events were observed in rVIG treated mice, suggesting the immunoglobulin is well tolerated. These findings suggest that recombinant immunoglobulins could be candidates for further evaluation and possible licensure under the FDA Animal Rule.


Assuntos
Antivirais/uso terapêutico , Imunoglobulinas/uso terapêutico , Orthopoxvirus/efeitos dos fármacos , Varíola/tratamento farmacológico , Vaccinia/tratamento farmacológico , Animais , Antivirais/administração & dosagem , Benzamidas , Linhagem Celular , Chlorocebus aethiops , Citosina/análogos & derivados , Feminino , Humanos , Isoindóis , Camundongos , Camundongos Endogâmicos BALB C , Organofosfonatos , Varíola/prevenção & controle , Varíola/virologia , Vacina Antivariólica/administração & dosagem , Vacinas de DNA/administração & dosagem , Vaccinia/prevenção & controle , Vaccinia/virologia
8.
Viruses ; 13(8)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34452494

RESUMO

Mass vaccination has played a critical role in the global eradication of smallpox. Various vaccinia virus (VACV) strains, whose origin has not been clearly documented in most cases, have been used as live vaccines in different countries. These VACV strains differed in pathogenicity towards various laboratory animals and in reactogenicity exhibited upon vaccination of humans. In this work, we studied the development of humoral and cellular immune responses in BALB/c mice inoculated intranasally (i.n.) or intradermally (i.d.) with the VACV LIVP strain at a dose of 105 PFU/mouse, which was used in Russia as the first generation smallpox vaccine. Active synthesis of VACV-specific IgM in the mice occurred on day 7 after inoculation, reached a maximum on day 14, and decreased by day 29. Synthesis of virus-specific IgG was detected only from day 14, and the level increased significantly by day 29 after infection of the mice. Immunization (i.n.) resulted in significantly higher production of VACV-specific antibodies compared to that upon i.d. inoculation of LIVP. There were no significant differences in the levels of the T cell response in mice after i.n. or i.d. VACV administration at any time point. The maximum level of VACV-specific T-cells was detected on day 14. By day 29 of the experiment, the level of VACV-specific T-lymphocytes in the spleen of mice significantly decreased for both immunization procedures. On day 30 after immunization with LIVP, mice were infected with the cowpox virus at a dose of 46 LD50. The i.n. immunized mice were resistant to this infection, while 33% of i.d. immunized mice died. Our findings indicate that the level of the humoral immune response to vaccination may play a decisive role in protection of animals from orthopoxvirus reinfection.


Assuntos
Imunidade Adaptativa , Vírus da Varíola Bovina/fisiologia , Varíola Bovina/prevenção & controle , Reinfecção/prevenção & controle , Vírus Vaccinia/imunologia , Vaccinia/imunologia , Vacinas Virais/administração & dosagem , Animais , Anticorpos Antivirais/imunologia , Varíola Bovina/imunologia , Varíola Bovina/virologia , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Reinfecção/imunologia , Reinfecção/virologia , Linfócitos T/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vaccinia/virologia , Vírus Vaccinia/genética , Vírus Vaccinia/fisiologia , Vacinas Virais/imunologia
9.
Virol J ; 18(1): 124, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107993

RESUMO

BACKGROUND: The vaccinia virus (VACV) isolates, Guarani P1 virus (GP1V) and Passatempo virus (PSTV), were isolated during zoonotic outbreaks in Brazil. Each one of them belongs to two different VACV clades, defined by biological aspects that include virulence in mice and phylogenetic analysis. Considering that information about how vaccinia viruses from different groups elicit immune responses in animals is scarce, we investigated such responses in mice infected either by GP1V (group 2) or PSTV (group 1), using VACV Western Reserve strain (VACV-WR) as control. METHODS: The severity of the infections was evaluated in BALB/c mice considering diverse clinical signs and defined scores, and the immune responses triggered by GP1V and PSTV infections were analysed by immune cell phenotyping and intra-cytoplasmic cytokines detection. RESULTS: We detected a reduction in total lymphocytes (CD3 +), macrophages (CD14 +), and NK cells (CD3-CD49 +) in animals infected with VACV-WR or GP1V. The VACV-WR and GP1V viruses, belonging to the most virulent group in a murine model, were able to down-modulate the cell immune responses upon mice infection. In contrast, PSTV, a virus considered less virulent in a murine model, showed little ability to down-modulate the mice immune responses. Mice infected with VACV-WR and GP1V viruses presented significant weight loss and developed lesions in their spleens, as well as damage to liver and lungs whereas mice infected with PSTV developed only moderate clinical signs. CONCLUSIONS: Our results suggest that VACV immunomodulation in vivo is clade-related and is proportional to the strain's virulence upon infection. Our data corroborate the classification of the different Brazilian VACV isolates into clades 1 and 2, taking into account not only phylogenetic criteria, but also clinical and immunological data.


Assuntos
Imunomodulação , Vírus Vaccinia , Vaccinia , Animais , Modelos Animais de Doenças , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Vaccinia/imunologia , Vaccinia/virologia , Vírus Vaccinia/genética , Vírus Vaccinia/patogenicidade , Virulência
10.
PLoS Pathog ; 17(2): e1009303, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529218

RESUMO

Metabolism is a crucial frontier of host-virus interaction as viruses rely on their host cells to provide nutrients and energy for propagation. Vaccinia virus (VACV) is the prototype poxvirus. It makes intensive demands for energy and macromolecules in order to build hundreds and thousands of viral particles in a single cell within hours of infection. Our comprehensive metabolic profiling reveals profound reprogramming of cellular metabolism by VACV infection, including increased levels of the intermediates of the tri-carboxylic acid (TCA) cycle independent of glutaminolysis. By investigating the level of citrate, the first metabolite of the TCA cycle, we demonstrate that the elevation of citrate depends on VACV-encoded viral growth factor (VGF), a viral homolog of cellular epidermal growth factor. Further, the upregulation of citrate is dependent on STAT3 signaling, which is activated non-canonically at the serine727 upon VACV infection. The STAT3 activation is dependent on VGF, and VGF-dependent EGFR and MAPK signaling. Together, our study reveals a novel mechanism by which VACV manipulates cellular metabolism through a specific viral factor and by selectively activating a series of cellular signaling pathways.


Assuntos
Citratos/metabolismo , Ciclo do Ácido Cítrico , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fator de Transcrição STAT3/metabolismo , Vírus Vaccinia/fisiologia , Vaccinia/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fibroblastos/virologia , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Sistema de Sinalização das MAP Quinases , Metaboloma , Fosforilação , Fator de Transcrição STAT3/genética , Transdução de Sinais , Vaccinia/virologia
11.
PLoS Pathog ; 17(1): e1009215, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439897

RESUMO

Poxvirus systems have been extensively used as vaccine vectors. Herein a RNA-Seq analysis of intramuscular injection sites provided detailed insights into host innate immune responses, as well as expression of vector and recombinant immunogen genes, after vaccination with a new multiplication defective, vaccinia-based vector, Sementis Copenhagen Vector. Chikungunya and Zika virus immunogen mRNA and protein expression was associated with necrosing skeletal muscle cells surrounded by mixed cellular infiltrates. The multiple adjuvant signatures at 12 hours post-vaccination were dominated by TLR3, 4 and 9, STING, MAVS, PKR and the inflammasome. Th1 cytokine signatures were dominated by IFNγ, TNF and IL1ß, and chemokine signatures by CCL5 and CXCL12. Multiple signatures associated with dendritic cell stimulation were evident. By day seven, vaccine transcripts were absent, and cell death, neutrophil, macrophage and inflammation annotations had abated. No compelling arthritis signatures were identified. Such injection site vaccinology approaches should inform refinements in poxvirus-based vector design.


Assuntos
Vetores Genéticos/administração & dosagem , Imunidade Inata/imunologia , Reação no Local da Injeção/imunologia , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Vaccinia/imunologia , Infecção por Zika virus/imunologia , Animais , Feminino , Vetores Genéticos/genética , Genoma Viral , Camundongos , Camundongos Endogâmicos C57BL , RNA-Seq , Vacinas Sintéticas/imunologia , Vaccinia/genética , Vaccinia/metabolismo , Vaccinia/virologia , Vírus Vaccinia/isolamento & purificação , Vacinologia , Zika virus/isolamento & purificação , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
12.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177193

RESUMO

The poxviral B1 and B12 proteins are a homologous kinase-pseudokinase pair, which modulates a shared host pathway governing viral DNA replication and antiviral defense. While the molecular mechanisms involved are incompletely understood, B1 and B12 seem to intersect with signaling processes mediated by their cellular homologs termed the vaccinia-related kinases (VRKs). In this study, we expand upon our previous characterization of the B1-B12 signaling axis to gain insights into B12 function. We begin our studies by demonstrating that modulation of B12 repressive activity is a conserved function of B1 orthologs from divergent poxviruses. Next, we characterize the protein interactome of B12 using multiple cell lines and expression systems and discover that the cellular kinase VRK1 is a highly enriched B12 interactor. Using complementary VRK1 knockdown and overexpression assays, we first demonstrate that VRK1 is required for the rescue of a B1-deleted virus upon mutation of B12. Second, we find that VRK1 overexpression is sufficient to overcome repressive B12 activity during B1-deleted virus replication. Interestingly, we also evince that B12 interferes with the ability of VRK1 to phosphoinactivate the host defense protein BAF. Thus, B12 restricts vaccinia virus DNA accumulation in part by repressing the ability of VRK1 to inactivate BAF. Finally, these data establish that a B12-VRK1-BAF signaling axis forms during vaccinia virus infection and is modulated via kinases B1 and/or VRK2. These studies provide novel insights into the complex mechanisms that poxviruses use to hijack homologous cellular signaling pathways during infection.IMPORTANCE Viruses from diverse families encode both positive and negative regulators of viral replication. While their functions can sometimes be enigmatic, investigation of virus-encoded, negative regulators of viral replication has revealed fascinating aspects of virology. Studies of poxvirus-encoded genes have largely concentrated on positive regulators of their replication; however, examples of fitness gains attributed to poxvirus gene loss suggests that negative regulators of poxvirus replication also impact infection dynamics. This study focuses on the vaccinia B12 pseudokinase, a protein capable of inhibiting vaccinia DNA replication. Here, we elucidate the mechanisms by which B12 inhibits vaccinia DNA replication, demonstrating that B12 activates the antiviral protein BAF by inhibiting the activity of VRK1, a cellular modulator of BAF. Combined with previous data, these studies provide evidence that poxviruses govern their replication by employing both positive and negative regulators of viral replication.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interações Hospedeiro-Patógeno , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Vírus Vaccinia/enzimologia , Vaccinia/imunologia , Proteínas Virais/metabolismo , Antivirais , Proteínas de Ligação a DNA/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Vaccinia/metabolismo , Vaccinia/virologia , Proteínas Virais/genética
13.
PLoS Pathog ; 16(10): e1008660, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075093

RESUMO

Mammary carcinoma, including triple-negative breast carcinomas (TNBC) are tumor-types for which human and canine pathologies are closely related at the molecular level. The efficacy of an oncolytic vaccinia virus (VV) was compared in low-passage primary carcinoma cells from TNBC versus non-TNBC. Non-TNBC cells were 28 fold more sensitive to VV than TNBC cells in which VV replication is impaired. Single-cell RNA-seq performed on two different TNBC cell samples, infected or not with VV, highlighted three distinct populations: naïve cells, bystander cells, defined as cells exposed to the virus but not infected and infected cells. The transcriptomes of these three populations showed striking variations in the modulation of pathways regulated by cytokines and growth factors. We hypothesized that the pool of genes expressed in the bystander populations was enriched in antiviral genes. Bioinformatic analysis suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. In addition, we demonstrated experimentally that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. This information could be used to design new generations of oncolytic poxviruses. Beyond the field of gene therapy, this study demonstrates that single-cell transcriptomics can be used to identify cellular factors influencing viral replication.


Assuntos
Neoplasias Mamárias Animais/metabolismo , Terapia Viral Oncolítica/métodos , Fatores de Transcrição/metabolismo , Transcriptoma , Vírus Vaccinia/genética , Vaccinia/metabolismo , Replicação Viral , Animais , Biologia Computacional , Cães , Feminino , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/terapia , Neoplasias Mamárias Animais/virologia , Análise de Célula Única , Fatores de Transcrição/genética , Vaccinia/genética , Vaccinia/virologia
14.
Viruses ; 12(8)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722032

RESUMO

The mass smallpox vaccination campaign has played a crucial role in smallpox eradication. Various strains of the vaccinia virus (VACV) were used as a live smallpox vaccine in different countries, their origin being unknown in most cases. The VACV strains differ in terms of pathogenicity exhibited upon inoculation of laboratory animals and reactogenicity exhibited upon vaccination of humans. Therefore, each generated strain or clonal variant of VACV needs to be thoroughly studied in in vivo systems. The clonal variant 14 of LIVP strain (LIVP-14) was the study object in this work. A comparative analysis of the virulence and immunogenicity of LIVP-14 inoculated intranasally (i.n.), intradermally (i.d.), or subcutaneously (s.c.) to BALB/c mice at doses of 108, 107, and 106 pfu was carried out. Adult mice exhibited the highest sensitivity to the i.n. administered LIVP-14 strain, although the infection was not lethal. The i.n. inoculated LIVP-14 replicated efficiently in the lungs. Furthermore, this virus was accumulated in the brain at relatively high concentrations. Significantly lower levels of LIVP-14 were detected in the liver, kidneys, and spleen of experimental animals. No clinical manifestations of the disease were observed after i.d. or s.c. injection of LIVP-14 to mice. After s.c. inoculation, the virus was detected only at the injection site, while it could disseminate to the liver and lungs when delivered via i.d. administration. A comparative analysis of the production of virus-specific antibodies by ELISA and PRNT revealed that the highest level of antibodies was induced in i.n. inoculated mice; a lower level of antibodies was observed after i.d. administration of the virus and the lowest level after s.c. injection. Even at the lowest studied dose (106 pfu), i.n. or i.d. administered LIVP-14 completely protected mice against infection with the cowpox virus at the lethal dose. Our findings imply that, according to the ratio between such characteristics as pathogenicity/immunogenicity/protectivity, i.d. injection is the optimal method of inoculation with the VACV LIVP-14 strain to ensure the safe formation of immune defense after vaccination against orthopoxviral infections.


Assuntos
Anticorpos Antivirais/sangue , Vírus Vaccinia/imunologia , Vírus Vaccinia/patogenicidade , Administração Intranasal , Animais , Anticorpos Neutralizantes/sangue , Vírus da Varíola Bovina/imunologia , Feminino , Imunogenicidade da Vacina , Injeções Intradérmicas , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Vacina Antivariólica , Vaccinia/prevenção & controle , Vaccinia/virologia , Vírus Vaccinia/classificação , Virulência
15.
Sci Rep ; 10(1): 8350, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433493

RESUMO

Regulatory T cells (Tregs) maintain peripheral self-tolerance and limit immune mediated pathology. Like effector T cells, Tregs can specialize in TH1-dominated immune responses and co-express T-bet together with Foxp3. This allows for expression of CXCR3 and efficient homing to sites of TH1 responses. However, whether such functional specialization is paralleled by memory generation among Tregs is unknown. In this study, we investigated the ability of polyclonal Tregs to form functional memory in response to viral infection. Using adoptive transfer models to compare infection-experienced Tregs generated upon acute Lymphocytic Choriomeningitis Virus (LCMV) WE and Vaccinia Virus (VV) infections with naive Tregs, we observed no differences in their phenotype or their in vivo maintenance. When comparing functional properties of infection-experienced and naive Tregs, we found no differences in in vitro suppressive capacity nor in their ability to limit the effector response upon homologous, systemic or local re-challenge in vivo. Our results suggest that no functional Treg memory is generated in the context of systemic LCMV or VV infection, but we cannot rule out the possibility that the generation of Treg memory may be possible in other contexts.


Assuntos
Infecções por Arenaviridae/imunologia , Memória Imunológica , Linfócitos T Reguladores/imunologia , Vaccinia/imunologia , Transferência Adotiva , Animais , Infecções por Arenaviridae/virologia , Modelos Animais de Doenças , Humanos , Vírus da Coriomeningite Linfocítica , Camundongos , Linfócitos T Reguladores/transplante , Vaccinia/virologia , Vírus Vaccinia/imunologia
16.
PLoS One ; 15(4): e0230711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240193

RESUMO

Vaccinia virus (VACV) has been used extensively as the vaccine against smallpox and as a viral vector for the development of recombinant vaccines and cancer therapies. Replication-competent, non-attenuated VACVs induce strong, long-lived humoral and cell-mediated immune responses and can be effective oncolytic vectors. However, complications from uncontrolled VACV replication in vaccinees and their close contacts can be severe, particularly in individuals with predisposing conditions. In an effort to develop replication-competent VACV vectors with improved safety, we placed VACV late genes encoding core or virion morphogenesis proteins under the control of tet operon elements to regulate their expression with tetracycline antibiotics. These replication-inducible VACVs would only express the selected genes in the presence of tetracyclines. VACVs inducibly expressing the A3L or A6L genes replicated indistinguishably from wild-type VACV in the presence of tetracyclines, whereas there was no evidence of replication in the absence of antibiotics. These outcomes were reflected in mice, where the VACV inducibly expressing the A6L gene caused weight loss and mortality equivalent to wild-type VACV in the presence of tetracyclines. In the absence of tetracyclines, mice were protected from weight loss and mortality, and viral replication was not detected. These findings indicate that replication-inducible VACVs based on the conditional expression of the A3L or A6L genes can be used for the development of safer, next-generation live VACV vectors and vaccines. The design allows for administration of replication-inducible VACV in the absence of tetracyclines (as a replication-defective vector) or in the presence of tetracyclines (as a replication-competent vector) with enhanced safety.


Assuntos
Vetores Genéticos/administração & dosagem , Tetraciclinas/farmacologia , Vírus Vaccinia/crescimento & desenvolvimento , Vaccinia/prevenção & controle , Vírion/crescimento & desenvolvimento , Replicação Viral , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vacinas Sintéticas/administração & dosagem , Vaccinia/genética , Vaccinia/virologia , Vírus Vaccinia/efeitos dos fármacos , Vírus Vaccinia/genética , Proteínas Virais/genética , Vírion/efeitos dos fármacos
17.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132239

RESUMO

The entry/fusion complex (EFC) consists of 11 conserved proteins embedded in the membrane envelope of mature poxvirus particles. Poxviruses also encode proteins that localize in cell membranes and negatively regulate superinfection and syncytium formation. The vaccinia virus (VACV) A56/K2 fusion regulatory complex associates with the G9/A16 EFC subcomplex, but functional support for the importance of this interaction was lacking. Here, we describe serially passaging VACV in nonpermissive cells expressing A56/K2 as an unbiased approach to isolate and analyze escape mutants. Viruses forming large plaques in A56/K2 cells increased in successive rounds of infection, indicating the occurrence and enrichment of adaptive mutations. Sequencing of genomes of passaged and cloned viruses revealed mutations near the N terminus of the G9 open reading frame but none in A16 or other genes. The most frequent mutation was His to Tyr at amino acid 44; additional escape mutants had a His-to-Arg mutation at amino acid 44 or a duplication of amino acids 26 to 39. An adaptive Tyr-to-Cys substitution at amino acid 42 was discovered using error-prone PCR to generate additional mutations. Myristoylation of G9 was unaffected by the near-N-terminal mutations. The roles of the G9 mutations in enhancing plaque size were validated by homologous recombination. The mutants exhibited enhanced entry and spread in A56/K2 cells and induced syncytia at neutral pH in HeLa cells despite the expression of A56/K2. The data suggest that the mutations perturb the interaction of G9 with A56/K2, although some association was still detected in detergent-treated infected cell lysates.IMPORTANCE The entry of enveloped viruses is achieved by the fusion of viral and cellular membranes, a critical step in infection that determines host range and provides targets for vaccines and therapeutics. Poxviruses encode an exceptionally large number of proteins comprising the entry/fusion complex (EFC), which enables infection of diverse cells. Vaccinia virus (VACV), the prototype member of the poxvirus family, also encodes the fusion regulatory proteins A56 and K2, which are displayed on the plasma membrane and may be beneficial by preventing reinfection and cell-cell fusion. Previous studies showed that A56/K2 interacts with the G9/A16 EFC subcomplex in detergent-treated cell extracts. Functional evidence for the importance of this interaction was obtained by serially passaging wild-type VACV in cells that are nonpermissive because of A56/K2 expression. VACV mutants with amino acid substitutions or duplications near the N terminus of G9 were enriched because of their ability to overcome the block to entry imposed by A56/K2.


Assuntos
Células Gigantes/metabolismo , Fusão de Membrana/fisiologia , Mutação , Vírus Vaccinia/genética , Vírus Vaccinia/fisiologia , Proteínas Virais/genética , Internalização do Vírus , Linhagem Celular , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Fusão de Membrana/genética , Poxviridae/genética , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Vaccinia/metabolismo , Vaccinia/virologia , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
18.
Virology ; 544: 55-63, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32174514

RESUMO

Historic observations suggest that survivors of smallpox maintained lifelong immunity and protection to subsequent infection compared to vaccinated individuals. Although protective immunity by vaccination using a related virus (vaccinia virus (VACV) strains) was the key for smallpox eradication, it does not uniformly provide long term, or lifelong protective immunity (Heiner et al., 1971). To determine differences in humoral immune responses, mice were inoculated with VACV either systemically, using intranasal inoculation (IN), or locally by an intradermal (ID) route. We hypothesized that sub-lethal IN infections may mimic systemic or naturally occurring infection and lead to an immunodominance reaction, in contrast to localized ID immunization. The results demonstrated systemic immunization through an IN route led to enhanced adaptive immunity to VACV-expressed protein targets both in magnitude and in diversity when compared to an ID route using a VACV protein microarray. In addition, cytokine responses, assessed using a Luminex® mouse cytokine multiplex kit, following IN infection was greater than that stemming from ID infection. Overall, the results suggest that the route of immunization (or infection) influences antibody responses. The greater magnitude and diversity of response in systemic infection provides indirect evidence for anecdotal observations made during the smallpox era that survivors maintain lifelong protection. These findings also suggest that systemic or disseminated host immune induction may result in a superior response, that may influence the magnitude of, as well as duration of protective responses.


Assuntos
Imunidade Humoral , Vírus Vaccinia/imunologia , Vaccinia/imunologia , Imunidade Adaptativa , Administração Intranasal , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Injeções Intradérmicas , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Vaccinia/virologia
19.
J Gen Virol ; 101(5): 533-541, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32100702

RESUMO

Vaccinia virus (VACV) strain Western Reserve gene A49L encodes a small intracellular protein with a Bcl-2 fold that is expressed early during infection and has multiple functions. A49 co-precipitates with the E3 ubiquitin ligase ß-TrCP and thereby prevents ubiquitylation and proteasomal degradation of IκBα, and consequently blocks activation of NF-κB. In a similar way, A49 stabilizes ß-catenin, leading to activation of the wnt signalling pathway. However, a VACV strain expressing a mutant A49 that neither co-precipitates with ß-TrCP nor inhibits NF-κB activation, is more virulent than a virus lacking A49, indicating that A49 has another function that also contributes to virulence. Here we demonstrate that gene A49L encodes a second, smaller polypeptide that is expressed via leaky scanning translation from methionine 20 and is unable to block NF-κB activation. Viruses engineered to express either only the large protein or only the small A49 protein both have lower virulence than wild-type virus and greater virulence than an A49L deletion mutant. This demonstrates that the small protein contributes to virulence by an unknown mechanism that is independent of NF-κB inhibition. Despite having a large genome with about 200 genes, this study illustrates how VACV makes efficient use of its coding potential and from gene A49L expresses a protein with multiple functions and multiple proteins with different functions.


Assuntos
Vírus Vaccinia/genética , Proteínas Virais/genética , Virulência/genética , Animais , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Inibidor de NF-kappaB alfa/genética , NF-kappa B/genética , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Vaccinia/virologia , Proteínas Contendo Repetições de beta-Transducina/genética
20.
Proc Natl Acad Sci U S A ; 117(7): 3759-3767, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32019881

RESUMO

Modified vaccinia virus Ankara (MVA), a widely used vaccine vector for expression of genes of unrelated pathogens, is safe, immunogenic, and can incorporate large amounts of added DNA. MVA was derived by extensively passaging the chorioallantois vaccinia virus Ankara (CVA) vaccine strain in chicken embryo fibroblasts during which numerous mutations and deletions occurred with loss of replicative ability in most mammalian cells. Restoration of the deleted C12L gene, encoding serine protease inhibitor 1, enhances replication of MVA in human MRC-5 cells but only slightly in other human cells. Here we show that repair of the inactivated C16L/B22R gene of MVA enhances replication in numerous human cell lines. This previously uncharacterized gene is present at both ends of the genome of many orthopoxviruses and is highly conserved in most, including smallpox and monkeypox viruses. The C16L/B22R gene is expressed early in infection from the second methionine of the previously annotated Copenhagen strain open reading frame (ORF) as a 17.4-kDa protein. The C16/B22 and C12 proteins together promote MVA replication in human cells to levels that are comparable to titers in chicken embryo fibroblasts. Both proteins enhance virion assembly, but C16/B22 increases proteolytic processing of core proteins in A549 cells consistent with higher infectious virus titers. Furthermore, human A549 cells expressing codon-optimized C16L/B22R and C12L genes support higher levels of MVA replication than cell lines expressing neither or either alone. Identification of the genes responsible for the host-range defect of MVA may allow more rational engineering of vaccines for efficacy, safety, and propagation.


Assuntos
Especificidade de Hospedeiro , Vírus Vaccinia/fisiologia , Vaccinia/virologia , Replicação Viral , Sequência de Aminoácidos , Animais , Linhagem Celular , Embrião de Galinha , Deleção de Genes , Humanos , Alinhamento de Sequência , Vírus Vaccinia/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...